Helping Schools be BETR with the Building Electrification Technology Roadmap

November 30, 2023

© New Buildings Institute 2023

New Buildings Institute (NBI)

RESOURCE

REFOCUS

Mission: We push for **better buildings** that achieve **zero energy, zero carbon, and beyond** through research, policy, guidance, and market transformation—to protect people and the planet.

Today's Presenters

Mischa Egolf Technical Associate New Buildings Institute

Rhys Davis Technical Consultant Resource Refocus

Shannon Oliver Senior Project Manager New Buildings Institute

© New Buildings Institute 2023

Resource Refocus (RR)

Resource Refocus

provides innovative, technical consulting on **energy use in buildings** to help building industry stakeholders design and deliver **zero net energy**, **zero carbon**, and **energy efficiency** research, projects, and initiatives.

RESOURCE REFOCUS

Rhys Davis

Resource Refocus Staff

ste 1

Natalie Low

anak Bal

Introduction

California's K-12 schools emit an estimated 1.6 million metric tons of emissions annually

nbinew buildings Sources: Why K-12 Schools Should Feature in America's National Climate Strategy, SCE 2022 Power Content Label, CA Commercial End-Use Survey Content Label, CA Commercial End-Use Survey © New Buildings Institute 2023

Fuel choice greatly impacts carbon emissions

Burning gas-powered equipment is common for space heating, water heating and kitchen equipment.

© New Buildings Institute 2023

Overall approach

Getting to zero over

time is a concept that ensures the correct tools are in place to address a building lifecycle event in a way that aligns with the school district's long-term energy and carbon reduction goals.

BETR Report and Interactive Tool

Intro Cost Estimator Overall Summary Upfront Costs per ft² Upfront Total Costs

Upfront Cost Estimation Tool

Input your school building size and select the prompts from the dropdown menus below to calculate upfront cost estimates by equipment type and end use. See intro tab for more details on the inputs.

Input Your Building Size in ft? Note For most equipment, this tool uses everage See ft values to estimate upfront project costs. If your square footage is greater than 15,000 guare feet, select "Large" as your building type.

ct your building type
•
1

what type of equipment are you planning to upgrade?	Select the specific equipment to estimate	
(AII)	(All) T	

Range of Total Upfront Electrified Equipment Investment Costs

End Use	Electric Equipment	Total Cost Estimate Low	Total Cost Estimate High
Cooking	Countertop Kitchen Equipment	\$500	\$5,800
Domestic Hot Water	120 Volt HPWH	\$2,100	\$3,400
	Tankless Water Heater	\$4,100	\$26,900
Laundry	Heat Pump Dryer	\$400	\$2,200
Space Conditioning	Multi-Zone Rooftop Heat Pump	\$121,500	\$272,200
	Single-Zone Rooftop Heat Pump	\$148,500	\$515,700
Grand Total		\$277,200	\$826,200

© New Buildings Institute 2023

Electrification scenarios

Event in Building Lifecycle	Goals
Emergency Replacement	Minimal upfront costs, non-invasive installation, readily available equipment
Planned/Routine Capital Improvement & Deferred Maintenance	Minimal upfront costs, non-invasive installation, some lead time and planning for improved air quality
Efficiency & Cost Savings Project (Deep Efficiency Retrofit)	Lifecycle cost savings on utility bills and maintenance
Addition to Existing Building	Minimal upfront cost, lifecycle cost savings, improved air quality, fitting in with existing systems

Electrification scenarios

Event in Building Lifecycle	Goals Be proactive to avoid this one!
Emergency Replacement	Minimal upfront costs, non-invasive installation, readily available equipment
Planned/Routine Capital Improvement & Deferred Maintenance	Minimal upfront costs, non-invasive installation, some lead time and planning for improved air quality
Efficiency & Cost Savings Project (Deep Efficiency Retrofit)	Lifecycle cost savings on utility bills and maintenance
Addition to Existing Building	Minimal upfront cost, lifecycle cost savings, improved air quality, fitting in with existing systems
	© New Buildings institute 2023

Building size categories

- Most applicable equipment will depend on building size:
 - Large school buildings: ≥ 25,000 sf
 - Small school buildings: < 25,000 sf
 - **Relocatable** classroom buildings: 1,000 10,000 sf

Hood River Middle School | Hood River, OR Credit: Opsis Architecture

Electric technologies for schools – HVAC example

Baseline equipment	Electric options							
Ducted heating	 240V Air Source Heat Pump (ASHP) – split system or packaged rooftop unit (RTU) 							
Ductless heating	Packaged Terminal Heat PumpDuctless ASHP split system ("mini-split")							
Central boiler heating	 Variable Refrigerant Flow (VRF) Water Source/Ground Source heat pump Air to water heat pump 							

Study Methodology and Cost Results

What do we need to know about electrification options?

- In what **scenarios** are they feasible?
- In what **building types** are they appropriate?
- · Upfront cost and installation challenges
- Energy and GHG impacts
- Air quality impacts

Costs

- Gathered from RS Means, state and utility reports, and retailers
- Adjusted to include SoCal union labor rates & cost multipliers
- **Normalized** by building area and/or capacity
 - · Multiple sources used to determine cost ranges

	New York State Climate Action Council Scoping Plan Integration Analysis Technical Supplement, Section I, Annex 1: Inputs and Assumptions Preserved by: Energy-Environmental Economics	Economic Analysis of Heat Recovery Equipment in Commercial Dedicated Outside Air Systems
	Credit: New York State, E3	For: Northwest Energy Efficiency Alliance (NEEA)
		Final Report Credit: Red Car Analytics
	RSMeans data	Credit: Gordian
	Search Data Manage Estimates Square Foot Estimator Life Cycle Cost 🖈 My Favor	ites
NOI institute	Cost Data Commercial New Construction - Type Assembly - Labor Type Standard Union - Lo	ation RIVERSIDE (925) • Release Year 2023 Quarter 3 •

Installation Considerations

- Do panels need to be upsized?
- · Can existing infrastructure be used?
 - Wiring
 - · Piping
 - VAV boxes
 - · Ducts

nbi new buildings

- · Are there many components?
- · Is a DSA review required?

Credit: Ray Wohlfarth, Plumbing & Mechanical

© New Buildings Institute 2023

Operation Considerations

- Each project will require custom hourly energy modeling to determine specific energy cost and GHG impacts
 - However, based on system efficiencies and typical designs, we can **estimate impacts** of technologies **relative to the existing system**

Credit: Department of Energy

© New Buildings Institute 2023

Air Quality Considerations

- **Existing** school building systems often do not provide sufficient air quality needs
- Electrification retrofits can address air quality issues
 - Indoor gas combustion replaced by electric
 - Retrofitted ventilation systems combined with electric space conditioning

Water Heating Electrification Matrix

		UPFF COST (\$/	RONT RANGE SF)		SCEN	ARIO		вU Т	ILDI YPE	N G S	UTII CO IMP	LITY ST ACT		BENI	EFITS		
 ○ Low	TECHNOLOGY	Low	High	Emergency Replacement	Planned Capital Improvement	Deep Efficiency Retrofit	Addition to Existing Building	Small	Large	Relocatable	Lower or similar utility costs	Likely to increase utility costs	Ease of Maintenance	Ease of Install	IAQ improvement potential	GHG emission reduction	Low GWP Refrigerant Option
	Electric resistance tankless WH	\$0.28	\$1.80	v				~		~		~	•	•		0	
	120 Volt HPWH (<80 gallons)	\$1.23	\$2.04	v	r			v		~	v		•	•		•	
	240 Volt HPWH (<80 gallons)	\$1.27	\$2.54		v	v	v	v		~	v			•			~
	Central HPWH (>80 gallons)	\$0.36	\$1.43		V	v	V	~	~		V		•	0		-	~

Cooking Electrification Matrix

O Low	🗕 Medium	😑 High

Full	circles	are	most	desirable.

	UPFF COST I	RONT RANGE	SCENARIO				BUILDING TYPES			UTIL CO IMP	LITY ST ACT	BENEFITS					
TECHNOLOGY	Low	High	Emergency Replacement	Planned Capital Improvement	Deep Efficiency Retrofit	Addition to Existing Building	Small	Large	Relocatable	Lower or similar utility costs	Likely to increase utility costs	Ease of Maintenance	Ease of Install	IAQ improvement potential	GHG emission reduction		
Full Electric Commercial Kitchen Equipment (total kitchen cost)	\$14,265	\$63,873		~	~	~	~	~		~		-	-	•	0		
Electric Small Countertop Kitchen Equipment (total kitchen cost)	\$489	\$5,787	~	~	~	~	~		~	~				0	0		

© New Buildings Institute 2023

Laundry Electrification Matrix

	UPFF COST I	RONT		SCEN	ARIO		вU Т	ILDI YPE	NG S	UTIL CO IMP	LITY ST ACT		BENE	FITS		
TECHNOLOGY	Low	High	Emergency Replacement	Planned Capital Improvement	Deep Efficiency Retrofit	Addition to Existing Building	Small	Large	Relocatable	Lower or similar utility costs	Likely to increase utility costs	Ease of Maintenance	Ease of Install	IAQ improvement potential	GHG emission reduction	
Heat Pump Dryer (residential)	\$435	\$2,174	~	v	~	~	~	r	~	v		•	•	0	0	

Electric technologies for schools: key takeaways

- Make a plan!
- HVAC replacements will have the biggest impact
- Always choose heat pumps!
 - Look for low-GWP refrigerant
- Select ENERGY STAR certified equipment
- Consider how retrofits can support air quality improvements
- Consider electrical panel and transformer upgrades

Helping schools with BETR decision making

Decisions Are Made by People

- Consider where your district is on the curve.
- Consider where your district leaders are on the curve.
- What motivates district *leaders*: head, heart, or wallet?

INGS Credit: Boston University School of Public Health

Behaviors – Benefits or Barriers

- Risk perception drives behaviors
- Individual vs Organizational
- Internal vs External

Why are we talking about behavior change??

Be Prepared, do Your Homework

Be Clear and Concise Be Consistent and Persistent

Offsetting costs with IRA: Large School HVAC

Existing Boiler Chiller AHU/VAV	<u>Proposed</u> Multi-zone ASHP VRF DOAS/ERV
• Existing system replacement cost:	\$0.8-1.5 million
 Proposed electrification cost: 	\$3.3-5.4 million
 Incremental cost: 	\$2.5-3.9 million
Potential 179D deduction:	\$0.6-1.1 million
 Adjusted incremental cost: 	\$1.9-2.8 million
	© New Buildings Institute 2023

Thank you to Southern California Edison for their support of our school decarbonization efforts!

© New Buildings Institute 2023

Upcoming Efficient Healthy Schools Webinar!

- December 14, 2023 11-12 PT / 2-3pm ET
- Learn about Program benefits
- Hear from previous Program honorees
- Register here: <u>https://lbnl.zoom.us/webinar/regist</u> <u>er/WN_8vpE3j8yR-</u> <u>SiFb8xeX5Bdg#/registration</u>

Thank you!

schools@newbuildings.org

© New Buildings Institute 2023

Questions?