Optimizing Building-Grid Integration in Texas and the Southern Great Plains

This factsheet recommends selected high-impact building design and operational strategies for homes and buildings specifically tailored for Texas and the Southern Great Plains. Factsheets are available for other regions and for specific building types. The southern Great Plains, especially Texas, leads the nation in wind power deployment and has been called the “Saudi Arabia of wind.” Much more wind and solar power will come online in the next few decades. As this variable resource delivers more of the region’s electricity supply and as the electrification of buildings and transportation accelerates, the importance of smart, flexible buildings as grid citizens will grow. Buildings across the region are uniquely positioned to play an important role in improving building-grid integration through time-of-use energy efficiency, smart devices, connected controls, and distributed energy resources such as onsite/community solar and energy storage. The recommendations in this factsheet are based on a wide variety of research, including building-scale and grid-scale simulation modeling and on-the-ground GridOptimal pilot project experience.
Top 5 GridOptimal Building Design and Operation Strategies:

Texas and the Southern Great Plains

Efficiency and demand flexibility strategies have widely varying impacts across multiple building types, climates, and grid paradigms. These high-impact approaches can help improve building-grid integration outcomes on both sides of the meter in this region.

Energy efficiency. Passive efficient envelope measures like insulation, air-sealing, windows, and cool roofs, along with active building efficiency improvements through mechanical system upgrades (HVAC and water heating) offer both year-round savings and peak demand reduction during times of high grid demand and carbon emissions. Energy efficiency is an enabler and often an impact multiplier for demand flexibility.

Smart HVAC controls. Temperature setpoint and schedule adjustments such as setbacks, precooling, and preheating can deliver peak demand savings and shift load toward low-cost, low-carbon hours. Communications standards such as OpenADR 2.0b enable current and future participation in demand response and similar programs.

Managed EV charging. Electric vehicles (EVs) are a key decarbonization solution but charging adds substantial demand. Charging during off-peak hours, and reducing or staging charging during peak hours mitigates the impact. Special rates and generous incentives are often available for smart EV chargers.

Thermal energy storage. Thermal energy storage systems (e.g., ice, hot water) can enable load shifting away from high-cost, high-carbon hours. Key benefits include energy cost savings, emissions reductions, and resilient operations. Prioritize systems that enhance the overall energy efficiency of the cooling and heating systems to better co-optimize schedules and achieve both energy cost and carbon emissions savings, as well as resiliency.

Solar + storage. Onsite renewables help reduce building net demand during peak grid demand hours. In the wind-heavy grids found in the Great Plains, the flexibility offered by batteries and the ability to charge batteries during the day and discharge in the evenings are especially valuable. Solar + storage systems can enable buildings to island from the grid, allowing key systems and circuits to remain online during a power outage. Solar + storage can offer an attractive combination of cost savings, carbon reductions, and resiliency benefits.

Key Enablers: Energy Efficiency and Distributed Energy Resources

Energy efficiency is critical: more-efficient buildings have lower operating costs, carbon impacts, and power demand. Efficient buildings with high-performance envelopes remain comfortable for longer without mechanical conditioning, widening the demand response potential and load shifting window.

Passive strategies can deliver targeted time-of-use energy savings. Insulation and air-sealing save energy all the time, but especially during peak conditions. West-facing shading and electrochromic windows reduce cooling demand during costly, high-carbon summer evenings.

Active strategies offer demand response by shifting load away from peak hours toward low-cost, low-carbon hours. Automated grid-integrated controls on HVAC, water heating, lighting, and appliances facilitate reliable, consistent load shifting during occupied and unoccupied hours.

Distributed Energy Resources (DERs) including solar PV, batteries, managed EV charging, and thermal energy storage can deliver energy flexibility. Target energy storage systems that can charge during the day and reduce evening demand. Co-optimize storage systems for both cost and carbon through real-time rate and carbon signals or by adding in a time-varying synthetic carbon cost. At a minimum, be solar-ready and storage-ready: reserve space and capacity in conduits and electrical panels for future DERs and related electric infrastructure.
Designing and Operating Buildings in a Wind-Heavy Grid

Everything’s bigger in Texas—wind power included. Texas and the Southern Great Plains have abundant, large-scale wind power that shapes daily and seasonal carbon intensity patterns and net system load profiles.

Mid-day hours offer the cleanest grid-delivered electricity. Around the year 2040, current forecasts predict the most carbon-intensive hours during summer nights when solar and wind generation is lowest. This region is expected to see a significant ramp-up in net system load (a doubling of demand over just three hours) during winter evenings. Buildings with the flexibility to shift winter demand prior to 4pm and/or reduce demand after 5pm with temperature setbacks, plug load controls, and other strategies can reduce emissions and energy generation costs.

To minimize carbon emissions from electricity consumption, identify hours in each season when high building demand coincides with high grid carbon factors. Search for energy-saving or demand flexibility opportunities in the end-uses and equipment that are driving significant building demand during those hours. Strategies that are well-suited to this grid paradigm include passive load shaping (e.g., air-sealing, insulation), diurnal demand flexibility strategies (e.g., precooling, temperature setbacks) as well as medium-duration energy storage (e.g., batteries, cold/hot water tanks).

Electricity grids across the region are transforming toward zero carbon emissions. Buildings can enable this transition by focusing on time of use energy efficiency and demand flexibility.
Futureproofing: Building and Vehicle Electrification

Burning fossil fuels in buildings is responsible for about 9% of US carbon emissions, while transportation emissions make up 29%. Building and vehicle electrification can greatly reduce these emissions. This represents both a great challenge and a great opportunity.

Buildings: Generally, grids in the Great Plains are summer-peak, but as electrification advances, winter demand will grow – and electricity rates may be impacted. Designers should consider heating-season demand flexibility and peak load reduction strategies. Improved building envelopes and high-efficiency mechanical systems help minimize winter heating demand, while battery and thermal energy storage paired with smart controls can help shift peak demand.

Vehicles: Electric vehicle (EV) charging can add substantial whole-building loads and if not managed carefully can contribute to higher energy costs and carbon emissions. Specify smart EV chargers that can communicate with the utility or a third party. Bidirectional EV chargers are an emerging technology that can enable EV batteries to support electricity grids and buildings.

Futureproofing: Climate Change Adaptation and Resiliency

Resiliency is a critical consideration for building owners and occupants. Natural and climate-change-amplified disasters such as severe winter storms, heat waves, and floods have direct impacts, like local grid outages, and indirect impacts, like grid system overload or high energy costs, across the region. Energy efficiency can help extend the building’s passive survivability time window. Use hours of passive survivability as a metric for evaluating and comparing energy efficiency and demand flexibility strategies. Evaluate the resiliency and other non-energy benefits of both efficiency and flexibility strategies and prioritize strategies that improve building-grid integration benefits while saving energy and reducing carbon impacts. In many cases, resiliency benefits may be the deciding factor in deploying strategies such as energy storage; if so, ensure that day-to-day operations deliver cost, grid support, and emissions benefits.

Program Information

The GridOptimal Buildings Initiative aims to improve building-grid interactions across the built environment by empowering building owners, designers, utilities, and other key players with dedicated metrics, tools, and guidance.

Up to three LEED points are available for buildings that improve their building-grid integration outcomes through the GridOptimal Buildings Pilot Alternative Compliance Path. See: usgbc.org/credits/gridoptimal-152-v4.1

For more information, contact alexi@newbuildings.org
Read more: newbuildings.org/gridoptimal

NBI developed this GridOptimal design guidance factsheet.

The GridOptimal Buildings Initiative is supported by these organizations:

© New Buildings Institute, 2021